Retinal hypoxia in long-term diabetic cats.
نویسندگان
چکیده
PURPOSE To determine whether the retina is hypoxic in early stages of diabetic retinopathy in cats and to correlate intraretinal PO2 with fluorescein angiographic and histologic alterations. METHODS Intraretinal PO2 was measured with microelectrodes in three cats with long-standing diabetes (>6 years) that had been followed with fluorescein angiographs every 6 months. Average PO2 in the inner vascularized half of the retina was compared with similar measurements in 21 control animals. Photoreceptor oxygen consumption was also compared. The retinal vascular endothelium of the diabetic animals was stained for ADPase activity in flatmounts, and transverse sections were used to visualize microscopic alterations in vascular structure. RESULTS PO2 in the inner half of the retina was abnormally low in the diabetic cats, 7.7+/-5.2 mm Hg (35 penetrations in 3 cats) versus 16.4+/-9.3 mm Hg in normal cats (85 penetrations in 21 cats) (P << 0.001). Oxygenation was almost normal in some regions of the diabetic retinas, but little evidence of oxygen supply from the retinal circulation was observed in other regions. Inner retinal hypoxia was present in areas with no detectable capillary dropout in fluorescein angiograms or flatmounts. The worst changes histologically were microaneurysms, leukocyte and platelet plugging of aneurysms and venules, and degenerating endothelial cells in capillary walls. These histologic abnormalities were confined to small regions, some of which could be positively correlated with markedly abnormal PO2 profiles. Photoreceptor oxygen utilization was not affected in two diabetic cats, but was below normal in one animal in which choroidal PO2 was low. CONCLUSIONS This is the first direct demonstration of retinal hypoxia in early diabetic retinopathy, before capillary dropout was evident clinically. Hypoxia was correlated with endothelial cell death, leukocyte plugging of vessels, and microaneurysms.
منابع مشابه
Morphology of retinal photoreceptor layer in continuous light-exposed and dark-adapted male cats
The morphology of retinal photoreceptor layer was studied in continuous light-exposed and dark-adapteddomestic male cats (Felis catus). The eyes of 12 healthy adult cats (4 in continuous light-exposed group, 4 in continuous dark-adapted group, and 4 in control group) were routinely fixed and studied by electron microscope. Results showed that the general structure of photoreceptor layer in this...
متن کاملIncreased Intraretinal PO2 in Short-Term Diabetic Rats
In diabetic retinopathy, neovascularization is hypothesized to develop due to hypoxia in the retina. However, evidence for retinal hypoxia is limited, and the progressive changes in oxygenation are unknown. The objective of this study was to determine if retinal hypoxia occurs early in the development of diabetes. Intraretinal oxygen (PO2) profiles were recorded with oxygen-sensitive microelect...
متن کاملVascular Complications and Diabetes: Current Therapies and Future Challenges
Diabetic retinal complications, including macular edema (DME) and proliferative diabetic retinopathy (PDR), are the leading cause of new cases of blindness among adults aged 20-74. Chronic hyperglycemia, considered the underlying cause of diabetic retinopathy, is thought to act first through violation of the pericyte-endothelial coupling. Disruption of microvascular integrity leads to pathologi...
متن کاملGrowth Factors in Proliferative Diabetic Retinopathy
Many growth factors are implicated in the pathogenesis of proliferative diabetic retinopathy. Alteration of growth factors and their receptors in diabetes has been shown in both experimental and clinical studies. Sustained hyperglycemia resulting from long-standing diabetes leads to several biochemical abnormalities that consequently result in retinal hypoxia. Retinal oxygenation state regulate...
متن کاملHypoxia in the eye: a two-sided coin.
Tissue oxygenation in general and hypoxia in particular are important regulators of retinal physiology and pathophysiology. Reduced oxygen tension and hypoxia-inducible transcription factors along with some of their target genes are critically involved in retinal development, and especially in the generation of a normal retinal vasculature. Well-timed hypoxia is thus vital for the young eye to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 39 9 شماره
صفحات -
تاریخ انتشار 1998